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Abstract. Long-time correlations in both well-developed and emerging market indexes are studied. The
Hurst exponent as well as detrended fluctuations analysis (DFA) are used as technical tools. Some features
that seem to be specific for developing markets are discovered and briefly discussed.

PACS. 05.45.Tp Time series analysis – 89.65.Gh Economics, business, and financial markets – 89.75.Fb
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1 Introduction

The purpose of this work is to investigate if there are
some long-time correlations in some typical financial time
series, namely in the daily values of some well-known in-
dexes. Apart from the most popular indexes such as DJIA
(New York) and DAX (Frankfurt), we also consider in-
dexes of three emerging markets: WIG (Warsaw), BUX
(Budapest), and PS (Prague). We hope to find some cru-
cial differences that could be uniquely attributed to the
developing economies of Poland, Hungary, and Czech Re-
public, in contrast to the well-established markets of USA
and Germany.

First we compute the Hurst exponent H via an inter-
polation method. Then we find this exponent once again
using the empirical method based on the R/S parameter.
This approach gives us a better control over accuracy for
much shorter time-series that are available for emerging
markets (WIG - 1727 observations, BUX - 958 observa-
tion, PS - 901 observation). For DJIA and DAX we use
much longer sets of data (18 500 and 7253 observations,
respectively). Next, for the same sets of data, we calculate
the parameter αdfa using the detrended fluctuations anal-
ysis (DFA) method. It will serve as a verification of the
Hurst method. If both R/S analysis and DFA will show
some long-term correlations in the investigated time se-
ries, we can be more convinced that there is something
real behind our results. If there is, however, a disagree-
ment between these two methods, we will rather follow
suggestions of Vandervalle and Ausloos [1] that the R/S
analysis gives less trustworthy results than DFA (whatever
the reason can be, e.g., too short data set available).
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2 R/S analysis – Hurst exponent

Hurst observed that many natural phenomena follow a bi-
ased random walk. He proposed to measure the strength
of trends in such processes by the value of a certain ex-
ponent. Generally speaking, the Hurst exponent is a mea-
sure of the rate of change of rescaled range with change
of the length of time over which measurements are per-
formed. Let N be the time series’ length. We divide it
into d sub-series of length n, so that dn = N . For each
m = 1, 2, . . . , d and t = 1, . . . , n let

Xt,m =
t∑

u=1

(Zu,m −Mm) (1)

be a time series containing n observations, where Zu,m
is the change within the period m, Mm is the average
change within the same period m, Xt,m is the cumulative
deviation in this period. Thus the range is given as

R = max(Xt,m)−min(Xt,m). (2)

To compare different time series we have to divide the
above range by the standard deviation of the original data,
obtaining (R/S)m. This procedure is then iterated for all
m. As a result the average R/S for a given t is calculated.
The relation between the length of time period n and the
rescaled range is

R/S = (a n)H , (3)

where H is the Hurst exponent.
Interpretation of this expression comes from the statis-

tical mechanics. If the investigated time series is described
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by a random walk, H should be close to 0.5 and, conse-
quently, the rescaled range grows proportionally to square
root of time (N in our case). This means that the observa-
tions in the time series are independent and, possibly, have
the Gauss distribution. If, on the contrary, the observed
value of the Hurst exponent H is bigger than 0.5, then
the observations are all dependent and the process itself
can be described as the fractional Brown motion. Such a
process exhibits a trend. Its strength grows with the value
of H approaching 1. A time series with such properties is
called persistent and can exhibit fractal properties.

Practical calculations of the Hurst exponent are some-
what difficult. The simplest method is, perhaps, the linear
regression after taking the logarithms of both sides of (3).
Using

St = ln(
Pt
Pt−1

) (4)

and applying (1) and (2) for different time increments
(here for different lengths of n) we obtain rescaled ranges
R/S, and then calculate the parameter H from the fol-
lowing equation

log(R/S) = H log(n) + log(a). (5)

It should be stressed, however, that in the case of too short
data sets the above procedure can be problematic.

3 Detrended fluctuation analysis

Here we use the DFA method to verify the results from
the previous section. Description of the DFA algorithm is
given in [1–3]. We follow here the approach of Vandevalle
and Ausloos [1]. Let y(n) be a time series of length N . We
subdivide the series into N/t non-overlapping sub-series
of length t. In each of them we eliminate the linear trend
z(n) = an + b, where parameters a and b are fitted by
means of the least squares method. Next we calculate the
DFA function:

F (t) =

√√√√1
t

((k+1)t∑
n=k t+1

(y(n)− z(n))2 (6)

where k = 1, 2, . . . , (N/t − 1). Averaging F (t) over N/t
subsets, gives the mean value of 〈F (t)〉 for a given sub-
series length t. If we observe the linear dependence look-
ing at the double logarithmic plot, the linear coefficient
will estimate a value of the desired parameter, which we
call αdfa. Formally, we expect the following relationship to
hold

〈F (t)〉 = a exp(αdfa t), (7)

which, after taking logarithms on both sides, gives

log(〈F (t)〉) = αdfa log(t) + const. (8)

Table 1. The values of the Hurst exponents and αdfa param-
eters for stock-market indexes (DJIA, DAX, BUX, WIG, PS).
Hurst exponents are calculated by an interpolation method.
In the last column YES means that the Hurst analysis and
DFA lead to similar conclusions. The answer NO means just
the opposite.

Name H - interpolation DFA-αdfa Does DFA and R/S

confirm each other?

DJIA 0.54 0.51 yes

DAX 0.51 0.52 yes

BUX 0.58 0.56 yes

WIG 0.69 0.52 no

PS 0.6 0.56 no

Similarly to the Hurst analysis, interpretation of the
results depends on the value of αdfa. In the simplest case
of the one dimensional Brownian motion, αdfa is equal
to 0.5 (just as in the case of the Hurst exponent). This
method has advantages comparing to R/S analysis: (i)
eliminating the linear trends one avoids some artifacts re-
lated to their existence and (ii) DFA analysis allows to
avoid detecting any spurious long-time correlations (e.g.,
due to non-stationary character of a time series).

4 Results and discussion

The main results obtained by our analysis are summarized
in the Table 1 and in Figures 1 and 2. It is clearly seen that
in all considered cases the Hurst exponents are different
from 0.5. Thus the investigated indexes do not follow the
simple random walk. A more or less striking persistence
is observed. However for most of the series, the DFA does
not fully support the Hurst analysis: the parameter αdfa

is rather close to 0.5. For BUX and PS this parameter is
apparently greater than 0.5, but we can see from Figure 2
that just in these cases the relationship between logF (t)
and log t deviates from the linear form. This can be caused
by a relatively small number of available data. The error
of estimation of αdfa is, therefore, quite large. We see that
the Hurst exponents are apparently greater for the emerg-
ing markets. We believe that a more sophisticated analysis
along the lines presented in this paper will eventually re-
veal some special features helping to quantify differences
between well-developed and emerging markets.

5 Brief summary

Long-time correlations in both well-developed and emerg-
ing market indexes (DJIA, DAX, WIG, BUX, PS) were in-
vestigated via the Hurst exponent as well as the detrended
fluctuations analysis. In contrast to DJIA and DAX which
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Fig. 1. Graphical presentation of
the R/S analysis performed to in-
fer the values of the Hurst ex-
ponents. Apart from stock-market
indexes (DJIA, DAX, WIG, BUX)
the analysis of the rate of exchange
for USD-DEM and USD-JPY is
given for comparison.

Fig. 2. Graphical presentation
of detrended fluctuations analysis
for stock-market indexes (DJIA,
DAX, WIG, BUX, PS). A plot cor-
responding to the rate of exchange
for USD-DEM is included for com-
parison.
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do not show too strong persistent behavior, the Hurst ex-
ponents for emerging-market indexes are greater than 0.5,
which may be a sign for their fractal structure. Despite
the unavoidable inaccuracies caused by the relatively small
size of data sets available for emerging markets, we believe
that our observations do exhibits some features that are
peculiar for East European developing markets. We plan
to extend our analysis and to provide a better evidence
for our conjectures.
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